Перевести страницу

Статьи

Подписаться на RSS

Популярные теги Все теги

Анализ шнека и выявление микротрещин

На нашу производственную площадку поступила шнековая пара с локальными трещинами по телу шнека. Ниже можно более подробно ознакомится с требованиями заказчика и перечнем выполняемых работ.
 

Выполнена дефектовка шнековой пары экструдера Mikrosan MCV 110/22D 

 Требования при выполнении ремонта :

1. Провести дефектовку, анализ методов устранения дефектов.   

2. Заварить все имеющиеся трещины на шнеках, обеспечив отсутствие при ремонте и при дальнейшей эксплуатации образование микотрещин.     

3. Устранить  разгарную сетку на наконечниках и в зоне выдавливания шнеков.

4. Восстановить геометрию и защитный слой  наконечников и витков шнеков.

5. Обеспечить плавные переходы от зоны выдавливания шнеков к наконечникам.

6. Восстановление защитного слоя путем наплавки высокопрочной  стали.

7. После устранения трещин необходимо провести  опрессовку шнеков давлением не менее 14 бар. 

8. После проведенного ремонта наполнить полости темперирования шнеков дистиллированной водой в объеме 50% от общего объема. Обеспечить герметичность, установив  резьбовые заглушки шнеков. 


По итогу осмотра шнековой пары выявлены следующие повреждения:

1. Обнаружены трещины на витках шнека(около 10), а так же на теле шнека(6 трещин) в межвитковой части.

2. Коррозия на витках шнека 

3. Твердость внутреннего диаметра гильзы составляет 68-72 HRC(сделано 6 промеров)

4. Твердость витков шнеков 68-72 HRC (сделано 6 промеров)
5. Твердость тела шнеков 68-72 HRC (сделано 6 промеров) 


 

Результаты дефектовки шнековой пары Microsan 110/22d.

Трещины, образовавшиеся на теле шнеков, возникли вследствие неправильной технологии при изготовлении шнеков. Твердость хромированной поверхности превысило 62 ед, что и привело к деформации поверхности. 


История развития экструдера

Одношнековый экструдер как «экструзионное устройство» был разработан во второй половине XIX века и получил широкое распространение в промышленно­сти. Его используют в трех основных отраслях:

      гончарной (керамические соединения):

    экструзия, формование;

      резиновой промышленности (натуральный каучук, резина):

    пластификация, экструзия;

    производство профилей;

      пищевой промышленности (маслосодержащие фрукты, семена масличных

культур):

    экстракция биологических масел;

    сепарация материала с использованием перфорированных шнеков;

    переработка мяса с помощью мясорубки.

Подача продукта в одношнековый экструдер кажется, на первый взгляд, не­сколько необычной. В то время как каждая молекула металла остается в одной и той же плоскости поперечного сечения, материал, тем не менее, транспортируется в осевом направлении. Ниже приведена попытка объяснения: шнек вращается без изменения положения, при этом продукт не вращается, а скользит в осевом направ­лении, другими словами, он перемещается в осевом направлении. Однако такой так называемый «теоретический» транспорт не существует на практике, поскольку продукт не является твердым телом, а представляет собой высоковязкую жидкость с реологическими свойствами.

Адгезионные и фрикционные характеристики полимерного материала опреде­ляют интенсивность течения. Для ньютоновских жидкостей — это половина вели­чины теоретической транспортирующей способности (при постоянном давлении) и даже менее при противодавлении (экструзии), вплоть до нуля. В последнем случае продукт вращается вместе с валом и выход прекращается.

Этот недостаток одношнековых машин, особенно отсутствие очистки вала и большая зависимость транспорта от реологических свойств, заставил изобрета­телей искать решения этих проблем. Поэтому как вариант решения проблемы -  экструдер с сонаправленным враще­нием шнеков был изначально предложен как самоочищающийся механизм. Шесть патентов в течение 70-летнего периода (1869—1939) показывают, что двухшнековый экструдер оставался в значительной степени на переднем крае инженерной мысли. 

В начале 1940-х годов систематические исследования двухшнековых экструзионных систем начались на заводе IG в Вольфене, Саксония-Анхальт. Они включали комбинированный физический, математический, инженерный и механический анализ, выполненный WMeskatAGebergRErdmenger и их сотрудниками. Коман­де была поручена разработка надежного «механического устройства» для химиче­ских процессов с высоковязкими продуктами.

Работа была продолжена фирмой Bayer AG в Леверкузене ориентированными на газработку технологии группами в составе новой структуры «прикладной физики».

Эта команда, работающая в химической промышленности, в первую очередь решала проблемы технологии систем с высокой вязкостью, особенно для развива­ющихся химических процессов фирмы Bayer AG.Механический аспект разрабаты­вался в соответствии с требованиями с той или иной степенью глубины.

Ремонт дробилок и шредеров для переработки пластика

Типовая технология ремонта ротора дробилки:


  1. Разборка, дефектовка, определение объема работ, снятие размеров и составление конструкторской документации.

  2.  Изготовление нового вала ротора дробилки.

  3. Изготовление бил ротора.

  4. Сборка и сварка нового ротора.

  5. Ремонтные работы по корпусы дробилки (заварка трещин, восстановление отверстий).

  6. Фрезеровка ложементов.

  7. Сборка ротора и статора. 

  8. Динамическая балансировка



    Примеры выполненных работ:



    Ремонт дробилки и изготовление нового ротора Zerma GSH 600/800

    В ремонт поступила дробилка для переработки пластмасс Zerma GSH 600/800 со сломанными билами. Слом билы произошел при работе в штатном режиме. Посторонних предметов, способных увеличить нагрузку и привести к слому ротора, не обнаружено. Дробилка была приобретена на вторичном рынке. Подробной информации о предыдущих ремонтах нет. Перед нами поставили задачу изготовить новый ротор дробилки и провести восстановительные работы по корпусу дробилки.

     

    Фотографии до ремонта:

Ремонтируемый ротор дробилки имел цельнолитую конструкцию с механически обработанными наклонными пазами для крепления ножей клиновыми зажимными планками.

 

Недостаток оригинальной конструкции: ослаблен зуб билы в месте фрезерованной поверхности под размещение регулировочного винта и контргайки. Мы изменили конструкцию ротора на сборно-сварную. Было усилено место излома введением радиусной галтели, увеличивающее опасное сечение. Это стало возможным благодаря применению винтов регулировочных со специальными компактными контргайками, расположенными под углом к вертикальной поверхности пазов крепления ножей. При этом диапазон радиального регулирования ножей сохранили. А старой конструкции, имеющей резьбовые отверстия под регулировочные винты, расположенные параллельно боковой поверхности пазов для размещения винта и контргайки были  исполнены глубокие пазы, ослабляющие тело бил.

Технология ремонта:


  1. Разборка, дефектовка, определение объема работ, снятие размеров и составление конструкторской документации.

  2.  Изготовление нового вала ротора дробилки.

  3. Изготовление бил ротора.

  4. Сборка и сварка нового ротора.

  5. Ремонтные работы по корпусы дробилки (заварка трещин, восстановление отверстий).

  6. Фрезеровка ложементов.

  7. Сборка ротора и статора. 


Фотографии процесса ремонта дробилки: